Inverse Scattering Transform for the Defocusing Manakov System with Nonzero Boundary Conditions
نویسندگان
چکیده
The inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions at infinity is rigorously studied. Several new results are obtained: (i) The analyticity of the Jost eigenfunctions is investigated, and precise conditions on the potential that guarantee such analyticity are provided. (ii) The analyticity of the scattering coefficients is established. (iii) The behavior of the eigenfunctions and scattering coefficients at the branch points is discussed. (iv) New symmetries are derived for the analytic eigenfunctions (which differ from those in the scalar case). (v) These symmetries are used to obtain a rigorous characterization of the discrete spectrum and to rigorously derive the symmetries of the associated norming constants. (vi) The asymptotic behavior of the Jost eigenfunctions is derived systematically. (vii) A general formulation of the inverse scattering problem as a Riemann–Hilbert problem is presented. (viii) Precise results guaranteeing the existence and uniqueness of solutions of the Riemann–Hilbert problem are provided. (ix) Explicit relations among all reflection coefficients are given, and all entries of the scattering matrix are determined in the case of reflectionless solutions. (x) A compact, closed-form expression is presented for general soliton solutions, including any combination of dark-dark and dark-bright solitons. (xi) A consistent framework is formulated for obtaining solutions corresponding to double zeros of the analytic scattering coefficients, leading to double poles in the Riemann–Hilbert problem, and such solutions are constructed explicitly.
منابع مشابه
The Inverse Scattering Transform for the Defocusing Nonlinear Schrödinger Equations with Nonzero Boundary Conditions
A rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonvanishing boundary values q± ≡ q0e± as x → ±∞ is presented. The direct problem is shown to be well posed for potentials q such that q − q± ∈ L1,2(R±), for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated a...
متن کاملInverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions
The inverse scattering transform for the focusing nonlinear Schrödinger equationwith non-zero boundary conditions at infinity is presented, including the determination of the analyticity of the scattering eigenfunctions, the introduction of the appropriate Riemann surface and uniformization variable, the symmetries, discrete spectrum, asymptotics, trace formulae and the so-called theta conditio...
متن کاملThe inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions
Articles you may be interested in Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions AIP Conf. A comparative analysis of Painlevé, Lax pair, and similarity transformation methods in obtaining the integrabi...
متن کاملnverse scattering transform for the vector nonlinear chrödinger equation with nonvanishing boundary onditions
The inverse scattering transform for the vector defocusing nonlinear Schrödinger NLS equation with nonvanishing boundary values at infinity is constructed. The direct scattering problem is formulated on a two-sheeted covering of the complex plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic extension on either sheet of the Riemann surface. Therefore, a suitable mod...
متن کاملInverse scattering transform for the integrable discrete nonlinear Schrodinger equation
The inverse scattering transform for an integrable discretization of the defocusing nonlinear Schrodinger equation with nonvanishing boundary values at infinity is constructed. This problem had been previously studied, and many key results had been established. Here, a suitable transformation of the scattering problem is introduced in order to address the open issue of analyticity of eigenfunct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2015